
A Distributed Routing Protocol Based on Key
Reservation in Quantum Key Distribution Networks

Jiaqi Wu∗, Lutong Chen∗, Jing Zhang†‡, Zixuan Huang†, Zhonghui Li∗, Jian Li∗, Kaiping Xue∗, Nenghai Yu∗
∗ School of Cyber Science and Technology, University of Science and Technology of China (USTC), Hefei, 230027, China

† Institute of Space Integrated Ground Network, Hefei, Anhui 230088, China
‡ Science Island Branch of Graduate School, USTC, Hefei, Anhui 230031, China
§ Corresponding Author: J. Li (lijian9@ustc.edu.cn), K. Xue (kpxue@ustc.edu.cn)

Abstract—Nowadays, Quantum Key Distribution (QKD) has
garnered widespread attention due to its ability to provide
symmetric secret keys with information-theoretic security in
point-to-point communication. Additionally, key relay technology
has been introduced to complete end-to-end key distribution
between remote parties by consuming keys in the intermediate
links. The routing problem of selecting paths for key relay
technology becomes crucial as it directly impacts the network’s
performance. In this paper, we focus on addressing the routing
problem for a specific scenario to serve applications with real-
time requirements. Real-time is a critical necessity for supporting
various applications, such as video chatting and calling. To satisfy
real-time requirements and achieve Quality of Service (QoS)
provision to guarantee the completion time, we introduce a
distributed routing protocol called Distributed Routing Protocol
Based on Key Reservation (Q-RoKR). It reserves keys in advance
along the selected path, thereby satisfying real-time requirements.
We also propose a priority-awareness mechanism to address
resource competition and make efficient use of keys in links.
Extensive experiments demonstrate that our protocol effectively
meets the real-time requirements and significantly improves
throughput. Furthermore, our key efficiency approaches the
optimal bound when compared to other comparison schemes.

Index Terms—Quantum Network, Quantum Key Distribution,
Routing Algorithm, Key Reservation.

I. INTRODUCTION

Secure communication in classical networks is a primary

focus of researchers. Currently, it heavily relies on asymmetric

encryption algorithms, such as RSA [1], which derive their se-

curity from computational complexity assumptions. However,

the advent of quantum computing has introduced a significant

threat to the security of classical communication systems

[2], as quantum computers possess unparalleled computational

power. Since the first quantum protocol showed its feasibility

[3], Quantum Key Distribution (QKD) can distribute secret

keys between communicating parties to achieve unconditional

secure communication in theory, by utilizing unique features

of quantum mechanics. Accordingly, numerous QKD networks

have been established worldwide, including the first DAPRA

network [4], SECOQC in Europe [5], Tokyo QKD network in

Japan [6], Beijing-Shanghai in China [7], and others.

In QKD networks, distributing secret keys between remote

parties is typically achieved through key relay, where end-

to-end keys are transmitted hop-by-hop. At each hop, the

key relay encrypts the end-to-end keys by utilizing point-to-

point keys on the links. However, the current point-to-point

quantum key coding rate is relatively low due to inherent

photon loss in quantum channels and susceptibility to noise-

induced disturbances [8]. Furthermore, the performance of

QKD decreases when employing more trusted relays to extend

the QKD distance [9], [10]. As a result, the routing problem,

i.e., selecting appropriate key relay paths, emerges as a critical

challenge in QKD networks. Overcoming it can enhance the

performance of remote quantum key distribution in networks.

Recently, several routing schemes have been proposed for

QKD networks, and most of these schemes are primarily

based on the network’s status for decision-making and treat

all requests equally. This approach overlooks the fact that

different applications have diverse Quality of Service (QoS)

requirements, and meeting the requirements has the potential

to enhance network performance. The real-time requirement

is critical and common for various applications, such as video

chatting and video meetings, that the network completes the

end-to-end key distribution before a specified deadline to

ensure uninterrupted and smooth communication. Recognizing

the need for QoS provision, Mehic et al. [11] introduced

a routing protocol called GPSRQ, but real-time was just a

criterion for classifying applications and was not considered

concretely. It desires to develop a routing scheme specifically

tailored to meet real-time requirements in QKD networks.

In this paper, we focus on delivering high-quality QKD

services to requests that demand real-time requirements. To

achieve this goal, we present a distributed routing protocol

named Distributed Routing Protocol Based on Key Reservation

(Q-RoKR). This protocol intelligently leverages secret keys

present on the network links, satisfying the real-time demands

of requests. The routing algorithm gives priority to meeting

real-time requirements while also attempting to enhance key

efficiency. By employing flexible key reservation in advance

along the selected path for a given request, we ensure exclusive

key utilization for real-time key relay technology. Furthermore,

we design a priority-awareness mechanism to address resource

competition during key reservations, leading to enhanced net-

work performance. We conduct extensive experiments utilizing

SimQN [12], a discrete event-based quantum network simu-

lation platform. The Q-RoKR protocol, along with two novel

comparison schemes, has been implemented and evaluated.



The experimental results demonstrate the availability and

effectiveness of our protocol for serving real-time requests.

The contributions of the paper are the following:

• We propose a complete and available routing protocol

based on flexible key reservations in links and fill the

gap in current routing schemes about the scenario that

requests have specific real-time requirements.

• We design a priority-awareness mechanism according

to the requirements of requests to deal with resource

competition and make reasonable use of precious keys.

• We realize our protocol and two comparison schemes on

SimQN and the results show that our protocol is superior

to comparison schemes in service rate and throughput

significantly while effectively using keys in links.

This paper is organized as follows. Section II introduces

related works. Section III presents the system model and

problem statement. In Section IV, we propose the Q-RoKR

routing protocol for real-time requirements, and we conduct

experiments in Section V. Section VI concludes the paper.

II. RELATED WORK

Numerous routing schemes have been proposed to select

paths for distributing end-to-end secret keys between com-

municating parties. Nevertheless, most of them only consider

the network status. In [13], Tanizawa et al. designed a metric

of the available secret keys in links to quantify the links

and then used it to instruct path selection. Yang et al. [14]

used the average key generation rate and status of key pools

to calculate the link cost metric and thus selected the path

with the lowest cost. Similarly, Yao et al. [15] designed the

recovery capacity indicator with more information, including

key consumption rate, while Chen et al. [16] considered the

length of the path when calculating the cost. However, they

select the path according to the network status directly, which

can not promise to serve requests with specific requirements.

We also notice that several schemes have been proposed

with a focus on meeting application requirements and deliv-

ering a certain level of QoS. Chen et al. [17] introduced the

concept of setting application priorities in advance, indicat-

ing the relative importance of requests, along with the total

key requirement and the required key update rate. Similarly,

Cheng et al. [18] categorized requests into three groups based

on their distinct real-time requirements. They employed key

reservations for requests with the highest priority while adopt-

ing hop-by-hop queuing for other requests. However, their

scheme lacks a mechanism to address recovery and resource

competition. Motivated by the urgent need to design a routing

scheme for QoS provision and recognizing the interconnection

between public and quantum channels [19], a novel QoS

model and routing protocol were proposed in [11] to ensure

QoS assurance, albeit without providing a detailed approach

to satisfying a requirement strictly. In conclusion, current

schemes can not handle real-time requirements precisely.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we present the layered architecture of a

typical QKD network and some notations used in our protocol.

We also describe and analyze the problem.

A. System Model

We adopt a typical layered QKD network architecture due to

its precise delineation of different layers [20]. This architecture

has three distinct layers from bottom to top: 1) a quantum layer

to generate symmetric keys in point-to-point ways, 2) a key

management layer to manage keys, and 3) a network control

layer to control the entire network, including the routing

model. Applications that request end-to-end keys are in an

upper service layer, and there are interfaces between it and

three QKD network layers to interact, including sending or

receiving requests and end-to-end keys distributed.

The QKD network serves as a secure key provider. A

request in QKD networks is represented by a four-element

tuple denoted as R = {S,D,K,DDL}, consisting of the

source node S, the destination node D, key requirement K
indicating the desired number of end-to-end keys, and a real-

time constraint DDL which specifies the maximum time

allowed for the completion of the end-to-end key distribution

process. When an application located at node S generates

a request R, it transmits this request to the routing model

situated within the network control layer. Then, the routing

model selects a viable path P for the given request R. Once

a suitable path P is determined, it is promptly forwarded

to the key management layer. Subsequently, all nodes along

the path P communicate to facilitate key relay technology

and distribute the end-to-end keys within the specified time

constraint. Finally, the application can retrieve the distributed

keys from the key manager and employ them to establish a

secure tunnel with the destination node D.

The nodes along a given path P are categorized into two

classes based on their respective positions: the source node

and the reservation nodes. Source nodes are responsible for

initiating requests, managing the routing procedures, and com-

municating with other nodes to apply key reservations. On the

other hand, reservation nodes refer to both intermediate nodes

and destination nodes. Their primary role is to accept or de-

cline key reservations. One of the challenges here arises from

the fact that point-to-point keys are generated between two

adjacent nodes, necessitating the cooperation of both nodes

involved in the key reservation process to avoid conflicts. To

address this challenge, we adopt a straightforward yet effective

principle: each reservation node is assigned the responsibility

of handling the key reservation for the predecessor link. For

instance, the destination node D should be responsible for

managing the key reservation for its preceding link, i.e., the

last link in the path P .

B. Problem Statement

Real-time requirements refer to the transmission finish time

from the source node to the destination node successfully be-

ing limited. The transmission time can mainly be divided into



two parts: the time required for end-to-end key establishment

and the data transmission delay. Also, the time spent on end-

to-end key distribution is the primary factor due to the low key

generation rate. In this context, we ignore data transmission

time as it is irrelevant to the routing protocol, and we consider

the time consumption during key distribution to satisfy real-

time requirements. Similar to the classic networks, the time

on end-to-end key establishment ttotal could be calculated by

ttotal = trout + tqueue + tproc + tpropa, (1)

where trout is the delay from routing, tqueue is the delay for

queuing in intermediate nodes, tproc is the time for processing

by keys at two ends of each link and tpropa is the propagation

delay along the links. Among four elements, tproc and tpropa
usually depend on the physical device’s performance, which

is beyond our consideration. Moreover, tqueue has a great

association with the key generation rate in links. As a result,

the primary goal is to guarantee key provisions within time

constraints by routing.

IV. ROUTING PROTOCOL

Motivated by the insufficiency of existing routing schemes

in addressing the specific real-time requirement scenarios, we

propose a novel Distributed Routing Protocol Based on Key

Reservation (Q-RoKR) for QKD networks. Our protocol aims

to resolve the challenge of distributing an adequate number of

end-to-end keys within the specified time requirements. Addi-

tionally, considering the scarcity of QKD keys, we introduce a

priority-awareness mechanism to effectively manage resource

competition and optimize key utilization on the links.

A. Overview

In order to deal with real-time requirements, we first design

a key management model to manage keys on each link from a

time perspective. That is, it reports whether a request can be

finished before its DDL by comprehensively considering the

number of keys in the key pool and the key generation rate.

The key management model is presented in Section IV-B.

Next, we introduce the Q-RoKR protocol. It checks multiple

paths in the order of the number of hops. Then, it leverages

the key management model to ensure the key supplement can

meet the DDL requirement, and contains three stages, as

shown in Fig. 1: 1) The source node selects a path between

S and D and sends reservation requests to all reservation

nodes; 2) The reservation nodes attempt to reserve keys in

the links based on the required K keys before DDL and

provide feedback to the source node regarding the feasibility

of the service and 3) Subsequently, the source node makes

decisions based on all the feedback received. Thus, we can

ensure that all links are capable of providing K QKD keys

before DDL. Consequently, if all links within the selected

path P successfully reserve keys for the request R, the end-

to-end keys between S and D can be established via key relays

prior to the arrival of the deadline. We illustrate the Q-RoKR

protocol in Section IV-C.

Fig. 1. The overview of Q-RoKR protocol and the key reservation procedure
between the source node and a reservation node.

B. Key Management Model

We construct the key management model starting from

a trivial ideal to evaluate the number of keys in a link

by multiplying the key generation rate and the period of

generation time. Thus, based on the history of the QKD link

performance, it is possible to evaluate the time used to produce

a given number of keys. Consider a link l(a,b) that connects

node a and node b. Let v(a,b) be the QKD key generation

rate. We mark the moment tag(a,b) as the time boundary

when all existing requests are serviced, as shown in Fig. 2,

where the two black arrows stand for the time axis, the blue

block shows the keys reserved for requests and the yellow

block indicates keys numbered K. It means that for incoming

requests with a DDL ≥ tag(a,b)+
K

v(a,b)
, l(a,b) can serve them

and update tag(a,b). In other words, tag(a,b) also stands for

the moment when l(a,b) could start providing keys for those

requests arriving newly.

Based on the above key management model, we shift the

focus from direct management of keys to indirect management

by adjusting the time boundary. When a new request is

received, it updates tag(a,b) and evaluates whether tag(a,b)
satisfies the DDL requirement. If so, l(a,b) is available for the

incoming request, and reserve keys for it.

Fig. 2. Key management model to evaluate the most recent available time.

Due to the capacity of key pools, tag(a,b) has the minimum

value

min(a,b) = tc −
cap(a,b)
v(a,b)

, (2)

where cap(a,b) is the capacity of the key pool and tc is the

current moment. We must check tag(a,b)’s validation, and

update it by min(a,b) when it is less than min(a,b) to avoid

key overflow, i.e., the key pool could not store all keys.

C. Q-RoKR Protocol Design

In this section, we present the Q-RoKR protocol. It selects

an optimal path that satisfies both the desired quantity K and

the real-time DDL requirements.



1) Path Selection: We consider the utilization of either a

link-state or distance-vector-based routing protocol to perform

continuous calculations of routing tables for all nodes. Specif-

ically, for a given node a, its routing table comprises multiple

paths that are arranged in ascending order based on the number

of hops required. However, we limit our consideration to paths

within a certain number of hops to reduce the consumption of

keys in links on long paths, due to the scarcity of keys.

Upon receiving a request R from applications, node a
proceeds with the following steps. Firstly, it selects the first

path from its routing table as the aimed path P . Subsequently,

it examines the time boundaries locally, denoted as tag on all

links along path P . If all of these boundaries meet the DDL,

node a initiates the process of reserving keys by sending a

reservation request to all reservation nodes. Inversely, if the

DDL can not be met, node a selects the next path from the

routing table as the new aimed path and repeats the above

procedure. When all available paths fail to serve, or DDL
is reached, the routing module notifies the application of the

unsuccessful routing attempt for the request R.

2) Key Reservation and Priority-Awareness Mechanism:
Without loss of generality, we describe the interaction between

a source node and any reservation node b along a path to

accomplish key reservations in detail here, since all reservation

nodes behave the same.

Considering the situation that two reservation requests

r(a,b) (for R = {S,D,K,DDL}) and r
′
(a,b) (for R′ =

{S′
, D

′
,K

′
, DDL

′}) arrives at the node b, where K < K
′

and DDL < DDL
′
. If the intuitive strategy of First-In-First-

Out (FIFO) is adopted, b reserves keys for R
′

and R in order

of arrival. However, it is possible that l(a,b) could not satisfy

R due to its strict DDL after providing lots of keys for R
′

with low real-time requirement DDL
′
. However, if it serves

R first, it may provide keys for both requests successfully.

Clearly, both the real-time and key quantity requirements

should be considered coordinately. We put forward a priority-

awareness mechanism to get a proper service order to achieve

high performance accordingly. Specifically, we give priority

to real-time requirements and prefer to reserve keys for those

with strict real-time requirements to serve requests as many as

possible. Second, to enhance throughput, we prefer to serve

requests with higher key quantity requirements whenever they

demand the same real-time requirement. Finally, to avoid low-

priority requests starve, Q-RoKR adopts priority promotion to

upgrade the final priority Pr of r(a,b) by

Pr ← Pr

DDL− tc
. (3)

It depends on the urgency of the request.

While receiving r(a,b), Q-RoKR puts it into the waiting

queue Q(a,b) of l(a,b) first so that it can handle multiple

requests with more efficiency at once. It waits for at the latest

T(a,b) to collect key reservation requests. To avoid waiting too

long to be provided with sufficient keys, we calculate the latest

distribution moment T(a,b) to limit the waiting time of r(a,b)

in Q(a,b) as

T(a,b) =

{
max(tc, DDL− K

in(a,b)
) in(a,b) > 0,

tc in(a,b) ≤ 0.
(4)

Here, in(a,b) is the available key increasing rate of l(a,b):

in(a,b) = v(a,b) − out(a,b), (5)

and out(a,b) is the key consumption rate of l(a,b) estimated by

average moving speed of tag(a,b) roughly:

out(a,b) =

{
v(a,b) × tag(a,b)−ts

tc−ts
tc > ts,

0 tc = ts,
(6)

where ts stands for the starting moment. When the link load

is low, the design of (4) realizes key reservations for requests

in a batch manner to serve more requests efficiently while

hoping to deal with requests as soon as possible to send quick

feedback when the link load goes high.

Algorithm 1: Priority-awareness Key Reservation

Input: Q(a,b) = {r1(a,b), · · ·, rn(a,b)}, T i
(a,b);

Output: fk
(a,b), ∀k ∈ {1, 2, ..., n};

if ri(a,b) for Ri has not been dealt with then
Sort all rk(a,b) by Kk in ascending order;

Sort all rk(a,b) by DDLk in descending order;

for k = 1 to n do
Prk ← k

DDLk−tc
;

end
Sort all rk(a,b) by Prk in decreasing order;

while Q(a,b) �= ∅ do
Pop out rk(a,b) with the highest priority;

Get tag(a,b) and v(a,b);

pre(a,b) ← tag(a,b) +
Kk

v(a,b)
;

if pre(a,b) ≤ DDLk then
tag(a,b) ← pre(a,b);

Put Rk into Succ(a,b);
end
Send fk

(a,b) about the reservation;

end
end

Once arriving at T(a,b), Q-RoKR checks if it has tried

to reserve keys for r(a,b). If not, we should deal with all

reservation requests in Q(a,b) at once: order requests by

priority, reserve keys for them in order, and finally send

feedback about key reservation results to the associated source

nodes. Specifically, we sort all reservation requests by key

requirements in ascending order and then sort them by real-

time requirements in descending order. Then, we use (3)

to calculate their final priorities and sort them by priorities

in descending order. Next, Q-RoKR reserves keys for those

requests in order. It pops the request with the highest priority,

predicts the time boundary pre(a,b) and examines if pre(a,b)
is within the real-time requirement DDL: if so, node b sends

feedback about the successful reservation to the associated



0.0 8.0×104 1.6×105 2.4×105 3.2×105

0.4

0.5

0.6

0.7

0.8

0.9

1.0
se

rv
ic

e 
 r

at
e

the total number of requests

 SPF
 GPSRQ
 Q-RoKR

Fig. 3. Service rate vs requests.

0.0 8.0×104 1.6×105 2.4×105 3.2×105

5.0×108

1.0×109

1.5×109

2.0×109

th
ro

ug
hp

ut

the total number of requests

 SPF
 GPSRQ
 Q-RoKR

Fig. 4. Throughput vs requests

 SPF
 GPSRQ
 Q-RoKR

0.0 8.0×104 1.6×105 2.4×105 3.2×105

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ke
y 

ef
fic

ie
nc

y

the total number of requests
Fig. 5. Key efficiency vs requests

0.0 8.0×104 1.6×105 2.4×105 3.2×105

5.0×108

1.0×109

1.5×109

2.0×109
ke

y 
co

ns
um

pt
io

n

the total number of requests

 SPF
 GPSRQ
 Q-RoKR

Fig. 6. Key consumption vs requests

source node, update time boundary to tag(a,b) = pre(a,b) and

store the request R; if not, inform the source node of the

failed reservation in l(a,b). The details of the key reservation

are shown in Alg. 1.

3) Feedback Analysis: Node a receives feedback f(a,b)
from node b and makes different decisions according to it.

If f(a,b) shows that l(a,b) has reserved keys numbered K for

R successfully and P is still the aimed path for R, then it

is stored for the moment. Next, a checks if all links have

reserve keys, and if so, the key relay starts immediately, and

end-to-end keys will be provided for the application to keep

communication in traditional networks securely. However, if

P can not meet the request’s requirement, node a would send

a cancellation request to node b at once.

In another case, if f(a,b) shows that l(a,b) failed to reserve

keys, node a updates local tag(a,b) first: if tag(a,b) is zero,

set tag(a,b) to the value in f(a,b). Otherwise, update tag(a,b)
only when the value in f(a,b) is larger. Second, node a sends

a cancellation request to all other reservation nodes (other

than b) to notify them to release the reserved keys if it has

not received any failed reservation feedback before receiving

f(a,b). Meanwhile, node a selects a next aimed path P ′ along

the routing table and begins a new key reservation on P ′.

V. EXPERIMENTS

To evaluate the generalized performance, we conduct our

experiments in a random topology using the Waxman algo-

rithm [21]. We also implement the Shortest Path First (SPF)

algorithm and the GPSRQ protocol [11] as the baselines. The

entire simulation and implementation are conducted in the

SimQN platform [12]. In our simulations, we utilize the BB84

protocol [3] to generate secret keys at a rate of 10 kbps. All

nodes equip a key pool capacity of 20 Mbit, ensuring adequate

storage of keys for the routing process.

0.0 8.0×104 1.6×105 2.4×105 3.2×105

0.4

0.5

0.6

0.7

0.8

0.9

1.0

se
rv

ic
e 

 r
at

e

the total number of requests

 SPF
 GPSRQ
 Q-RoKR

(a) High real-time requirements.

0.0 8.0×104 1.6×105 2.4×105 3.2×105

0.4

0.5

0.6

0.7

0.8

0.9

1.0

se
rv

ic
e 

 r
at

e

the total number of requests

 SPF
 GPSRQ
 Q-RoKR

(b) Low real-time requirements.

Fig. 7. The service rate in different real-time requirements.

A. Parameter Settings

To simulate a practical QKD networks scenario, we perform

the simulation by setting up 50 nodes in a square area of

1.2 × 105 m2, and locations of nodes and links are gen-

erated randomly. The simulation lasts for 30 seconds, and

the information about R, including S,D,K, and DDL, is

generated randomly as well. Specifically, the value of K
follows a normal distribution with a mean of 1.0 × 103 or

1.0 × 104 bit, and DDL ranges from 0 to 30 seconds. The

number of requests in every simulation ranges from 4 × 104

to 3.2 × 105 and increases by 4 × 104 every time. Note that

an application can continuously generate multiple requests

whenever it needs. Last, the simulation is repeated 50 times,

and average values are taken as the final results to conclude

the general performance of routing schemes.

B. Simulation Results

We calculate the service rate ratesucc as the ratio of requests

served in time to all requests in the network. Throughput

keyout is another metric indicating the number of end-to-end

keys established in the network. To express usage efficiency

of keys in links, we also design key efficiency index keyeff
and calculate it as

keyeff =
keyout

keyin

, (7)

where keyin is the total number of keys consumed for key

relay technology. In theory, due to the path for routing

consisting of no less than one link, keyeff has a range of

(0, 1] and its optimal value is 1, which means that the number

of the end-to-end keys is the same as consumed in the links.

In addition, we record the service rate in different real-time

requirements to show the tendency of ratesucc in different

real-time requirements as the number of requests increases.

As Fig. 3 and Fig. 4 show, since Q-RoKR guarantees key

provision for R before DDL arrives once P is selected by key

reservation mechanism as well as reasonable order calculated

by priority-awareness mechanism, Q-RoKR is superior to SPF

and GPSRQ in ratesucc and brings bigger keyout. Due to

path selection hop by hop, GPSRQ could find longer paths

with more keys to use and thus serve a little more requests

than Q-RoKR at first. However, as the number of requests

increases, our protocol could satisfy more requests and bring

more throughput thanks to making reasonable use of keys in

links. Besides, when more requests are generated in QKD



networks, GPSRQ even serves fewer requests and thus brings

less throughput than SPF since serving a request successfully

consumes a lot of keys on average because of its routing

mechanism for QoS guarantee.

As shown in Fig. 5, due to the hop restriction and reasonable

utilization of keys in links, Q-RoKR finds short paths, and the

key efficiency of Q-RoKR is higher than that in SPF and is

near the optimal value. As it serves more requests, Q-RoKR

has to find longer paths due to limited keys in links and its

keyeff becomes lower compared to SPF. In GPSRQ, keyeff is

lower than that in our protocol, and it decreases first because of

selecting a longer path and then increases gradually since that

distance becomes critical as information about keys becomes

similar due to large key consumption for many requests. In

short, our protocol brings more throughput by using keys in

links efficiently. As Fig. 6 shows, it is reasonable that Q-RoKR

consumes more keys to serve more requests than comparison

schemes. In addition, GPSRQ uses a lot of keys since it selects

longer paths at first, and its keyin becomes lower than that in

SPF and our protocol just because of the low service rate.

The service rate in different real-time requirements is shown

in Fig. 7. In general, we conclude that we serve more re-

quests in high and low real-time requirements, as shown in

Fig. 7(a) and Fig. 7(b) since Q-RoKR adopts key reservation

and priority-awareness mechanism to make use of keys more

reasonably. Meanwhile, when real-time requirement looses,

the proportion of requests served grows bigger. However,

GPSRQ does provide service for a few more requests with

high real-time requirements because it could find longer paths

with sufficient keys for requests in the beginning.

VI. CONCLUSION

In this paper, we proposed a routing protocol, Q-RoKR,

to provide QoS guarantees in QKD networks, specifically

for those requests that impose real-time requirements on key

relay technology. Recognizing the advantages of distributed

routing in large-scale networks, the Q-RoKR protocol adopts

a distributed routing scheme. This approach ensures both flex-

ibility and efficient utilization of keys in network links while

prioritizing the satisfaction of real-time requirements raised by

requests. The Q-RoKR protocol incorporates a key reservation

mechanism to effectively manage real-time requirements and

reduce the wastage of keys that are commonly observed in

previous hop-based distributed routing schemes. Furthermore,

the wastage of keys can even be avoidable if the capacity

of key pools is large enough to match the usage of keys

while it still exists in former schemes due to the failure to

meet real-time requirements. By considering both key quantity

and real-time requirements, the priority-awareness mechanism

enhances throughput and optimizes the utilization efficiency of

keys. Extensive experiments prove the overall network perfor-

mance by effectively balancing the trade-off between meeting

real-time requirements and maximizing key utilization.

ACKNOWLEDGMENT

This work is supported in part by Innovation Program

for Quantum Science and Technology under Grant No.

2021ZD0301301, Anhui Initiative in Quantum Information

Technologies under Grant No. AHY150300, the National Nat-

ural Science Foundation of China under grant No. 62201540,

and Youth Innovation Promotion Association of the Chinese

Academy of Sciences (CAS) under Grant No. Y202093.

REFERENCES

[1] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications of the
ACM, vol. 21, no. 2, pp. 120–126, 1978.

[2] C. Gidney and M. Ekerå, “How to factor 2048 bit RSA integers in 8
hours using 20 million noisy qubits,” Quantum, p. 433, 2021.

[3] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key
distribution and coin tossing,” in Proceedings of IEEE International
Conference on Computers, Systems, and Signal Processing, 1984.

[4] C. Elliott, D. Pearson et al., “Quantum cryptography in practice,” in
Proceedings of the 2003 ACM SigCOMM, 2003, pp. 227—-238.

[5] M. Peev, C. Pacher et al., “The SECOQC quantum key distribution
network in Vienna,” New Journal of Physics, p. 075001, 2009.

[6] M. Sasaki, M. Fujiwara et al., “Field test of quantum key distribution in
the Tokyo QKD Network,” Optics Express, vol. 19, no. 11, pp. 10 387–
–10 409, 2011.

[7] W. Kozlowski and S. Wehner, “Towards large-Scale quantum networks,”
in Proceedings of the Sixth ACM International Conference on Nanoscale
Computing and Communication, 2019, pp. 1–7.

[8] Y. Cao, Y. Zhao, Q. Wang et al., “The evolution of quantum key distri-
bution networks: On the road to the qinternet,” IEEE Communications
Surveys & Tutorials, vol. 24, no. 2, pp. 839–894, 2022.

[9] M. Wang, J. Li, K. Xue et al., “A segment-based multipath distribution
method in partially-trusted relay quantum networks,” IEEE Communi-
cations Magazine, vol. 61, no. 12, pp. 184–190, 2023.

[10] C. Elliott, “Building the quantum network*,” New Journal of Physics,
vol. 4, no. 1, p. 46, 2002.

[11] M. Mehic, P. Fazio, S. Rass et al., “A novel approach to quality-of-
service provisioning in trusted relay Quantum Key Distribution Net-
works,” IEEE/ACM Transactions on Networking, vol. 28, no. 1, pp.
168–181, 2020.

[12] L. Chen, K. Xue, J. Li, N. Yu, R. Li, Q. Sun, and J. Lu, “SimQN: a
network-layer simulator for the quantum network investigation,” IEEE
Network, pp. 1–8, 2023, DOI:10.1109/MNET.130.2200481.

[13] Y. Tanizawa, R. Takahashi, and A. R. Dixon, “A routing method
designed for a quantum key distribution network,” in Proceedings of
the 2016 Eighth International Conference on Ubiquitous and Future
Networks, 2016, pp. 208–214.

[14] C. Yang, H. Zhang, and J. Su, “Quantum key distribution network:
Optimal secret-key-aware routing method for trust relaying,” China
Communications, vol. 15, no. 2, pp. 33–45, 2018.

[15] J. Yao, Y. Wang, Q. Li, H. Mao, A. A. Abd El-Latif, and N. Chen,
“An efficient routing protocol for quantum key distribution networks,”
Entropy, vol. 24, no. 7, p. 911, 2022.

[16] L. Chen, M. Zhao et al., “ADA-QKDN: A new quantum key distribution
network routing scheme based on application demand adaptation,”
Quantum Information Processing, vol. 20, no. 309, pp. 1–22, 2021.

[17] L. Chen, Z. Zhang, M. Zhao, K. Yu, and S. Liu, “APR-QKDN: A
quantum key distribution network routing scheme based on application
priority ranking,” Entropy, vol. 24, no. 11, p. 1519, 2022.

[18] X. Cheng, Y. Sun, and Y. Ji, “A QoS-supported scheme for quantum
key distribution,” in Proceedings of the 2011 International Conference
on Advanced Intelligence and Awareness Internet, 2011, pp. 220–224.

[19] M. Mehic, O. Maurhart et al., “Analysis of the public channel of
quantum key distribution link,” IEEE Journal of Quantum Electronics,
vol. 53, no. 5, pp. 1–8, 2017.

[20] “ITU-T Y.3800 overview on networks supporting quantum key
distribution,” 2019, accessed on Feb. 2024. [Online]. Available:
https://handle.itu.int/11.1002/1000/13990

[21] B. Waxman, “Routing of multipoint connections,” IEEE Journal on
Selected Areas in Communications, vol. 6, no. 9, pp. 1617–1622, 1988.


